SIFAT-SIFAT KETERBAGIAN
Definisi : Sebuah bilangan bulat a dikatakan membagi b (ditulis a.b) jika terdapat bilangan bulat k
sehingga b = a · k. Beberapa hal berkaitan dengan pembagian adalah sebagai berikut :
1.1 Misalkan a, b, c, x dan y bilangan bulat, maka sifat-sifat di bawah ini berlaku :
(1) a.a (semua bilangan bulat membagi dirinya sendiri)
(2) a.0 (semua bilangan bulat membagi 0)
(3) 1.a (satu membagi semua bilangan bulat)
(4) Jika a.1 maka a = ±1
(5) Jika a.b maka a.xb
(6) Jika ab.c maka a.c dan b.c
(7) Jika a.b dan b.c maka a.c
(8) Jika a.b dan a.c maka a.(bx + cy)
(9) Jika a.b maka xa.xb
(10) Jika a.b dan b . 0 maka .a. = .b.
(11) Jika a.b dan b.a maka a = ±b
(12) Jika a.bc dan FPB(a, b) = 1 maka a.c
(13) 0.a hanya jika a = 0
1.2 Jika suatu bilangan habis dibagi a dan juga habis dibagi b, maka bilangan tersebut akan habis dibagi
ab dengan syarat a dan b relatif prima. Berlaku sebaliknya.
Dua bilangan dikatakan prima relatif, jika faktor persekutuan terbesarnya (FPB) dua bilangan
tersebut sama dengan 1.
Contoh : 36 habis dibagi 4 dan 3, maka 36 akan habis dibagi 12.
45 habis dibagi 15. Maka 45 juga habis dibagi 3 dan 45 juga habis dibagi 5.
12 habis dibagi 4 dan 12 juga habis dibagi 6 tetapi 12 tidak habis dibagi 4 · 6 = 24 sebab 4 dan 6
tidak relatif prima, FPB (4, 6) = 2
1.3 Bilangan yang dapat diubah menjadi perkalian n bilangan bulat berurutan akan habis dibagi n!
dengan tanda “!” menyatakan faktorial. n! = 1 · 2 · 3 · ··· · n.
Contoh : 3x4x5x6 = 360 merupakan perkalian 4 bilangan bulat berurutan maka habis dibagi 4! = 24.
1.4 Mengingat penjabaran pada dua persamaan berikut :
(i) (an - bn) = (a - b)(an-1 + an-2b + an-3b2 + ··· + abn-2 + bn-1) dengan n . bilangan asli
(ii) (an + bn) = (a + b)(an-1 - an-2b + an-3b2 - ··· - abn-2 + bn-1) dengan n . bilangan ganjil
Maka (a - b) membagi (an - bn) untuk semua a, b bulat dan n bilangan asli
(a + b) membagi (an + bn) untuk semua a, b bulat dan n bilangan ganjil
Contoh 2 :
(OSN 2003 SMP/MTs) Buktikan bahwa (n - 1)n(n3 + 1) senantiasa habis dibagi oleh 6 untuk semua bilangan
asli n.
Solusi :
Alternatif 1 :
Berdasarkan 1.2 didapat bahwa jika (n - 1)n(n3 + 1) habis dibagi 6 maka (n - 1)n(n3 + 1) habis akan dibagi
2 dan juga habis dibagi 3. Jadi, jika dapat dibuktikan bahwa (n - 1)n(n3 + 1) habis dibagi 2 dan juga habis
dibagi 3 maka dapat dibuktikan (n - 1)n(n3 + 1) senantiasa habis dibagi oleh 6 untuk semua bilangan asli
n.
(n - 1) dan n adalah 2 bilangan bulat berurutan maka (n - 1)n akan habis dibagi 2.
Berdasarkan 2.1 poin (1) maka (n - 1)n(n3 + 1) habis dibagi 2.
Sebuah bilangan bulat dapat diklasifikasikan ke dalam salah satu bentuk dari 3k, 3k + 1 atau 3k + 2.
Jika n = 3k maka 3 membagi n sehingga 3.(n - 1)n(n3 + 1)
Jika n = 3k + 1 maka 3.(n - 1) sehingga 3.(n - 1)n(n3 + 1).
Jika n = 3k + 2 maka n3 + 1 =(3k + 2)3 + 1 = 3(9k3 + 18k2 + 12k + 3) sehingga 3.(n3 + 1).
Maka 3.(n - 1)n(n3 + 1).
Didapat bahwa (n - 1)n(n3 + 1) habis dibagi 2 dan juga habis dibagi 3. Karena 2 dan 3 relatif prima maka
(n - 1)n(n3 + 1) habis dibagi 2 · 3 = 6.
Jadi, (n - 1)n(n3 + 1) habis dibagi 6.
Alternatif 2 :
(n - 1)n(n3 + 1) = (n - 1)n(n + 1)(n2 - n + 1)
Karena n - 1, n dan n tiga bilangan asli berurutan maka (n - 1)n(n + 1)(n2 - n + 1) habis dibagi oleh 3!= 6.
Jadi, (n - 1)n(n3 + 1) habis dibagi 6.
Contoh 3 :
(OSK 2005 SMP/MTS) Bilangan 43 dapat dinyatakan ke dalam bentuk 5a + 11b karena untuk a = 13 dan
b = -2, nilai dari 5a + 11b adalah 43. Manakah dari tiga bilangan 37, 254 dan 1986 yang tidak dapat
dinyatakan dalam bentuk 5a + 11b ?
A. 1983 B. 254 C. 254 dan 1986 D. semua E. tak ada
Solusi :
Perhatikan bahwa 1 dapat dinyatakan ke dalam bentuk 5a + 11b dengan a = -2 dan b = 1. Karena 1
membagi semua bilangan bulat maka semua bilangan dapat dinyatakan ke dalam bentuk 5a + 11b.
(Jawaban : D)
Misalkan diinginkan 5a + 11b = k maka kesamaan akan terjadi saat a = -2k dan b = k.
Contoh 4 :
Buktikan bahwa 7, 13 dan 181 adalah faktor dari 3105 + 4105
Solusi :
Karena 105 ganjil maka 3105 + 4105 habis dibagi 3 + 4 = 7.
3105 + 4105 = (33)35 + (43)35 = 2735 + 6435
Karena 35 ganjil maka 3105 + 4105 habis dibagi 27 + 64 = 91.
Karena 91 = 7 · 13 maka 3105 + 4105 habis dibagi 13.
3105 + 4105 = (35)21 + (45)21 = 24321 + 102421
Karena 21 ganjil maka 3105 + 4105 habis dibagi 243 + 1024 = 1267. Karena 1267 = 7 · 181 maka 3105 + 4105
habis dibagi 181.
Contoh 5 :
(OSK 2004 SMP/MTS) Semua n sehingga n dan 13-
+
nn keduanya merupakan bilangan bulat adalah ·····
Solusi :
Alternatif 1 :
Perhatikan bahwa 14141131--
+-
-
++==nnnnn
Agar 141-+n merupakan bilangan bulat maka n - 1 haruslah merupakan faktor dari 4.
Maka nilai dari n - 1 adalah ±1, ±2 dan ±4.
Nilai n yang memenuhi adalah -3, -1, 0, 2, 3 dan 5.
Alternatif 2 :
Selain dengan menggunakan sifat keterbagian, soal tersebut juga bisa diselesaikan dengan memfaktorkan.
Misalkan m = 13-
+
nn untuk suatu bilangan bulat n dan m.
Persamaan di atas ekivalen dengan
n + 3 = mn - m
(m - 1)(n - 1) = 4.
n - 1 haruslah merupakan faktor dari 4.
Maka nilai dari n - 1 adalah ±1, ±2 dan ±4.
Nilai n yang memenuhi adalah -3, -1, 0, 2, 3 dan 5.
Contoh 6 :
(OSP 2005 SMP/MTs) Semua pasangan bilangan asli m dan n yang memenuhi 132=+nm adalah ·········
Solusi :
Persamaan pada soal ekivalen dengan 2n + 3m = mn
(m - 2)(n - 3) = 6
Dengan demikian m - 2 dan n - 3 keduanya merupakan faktor dari 6.
Karena m dan n bilangan asli maka m - 2 > -2 dan n - 3 > -3
Maka m - 2 = 1, 2, 3 atau 6. Jadi m = 3, 4, 5 atau 8.
Jadi, pasangan (m, n) yang memenuhi adalah (3, 9), (4, 6), (5, 5), (8, 4).
Tidak ada komentar:
Posting Komentar